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Abstract. Application of thermodynamics to driven systems is discussed. As particular examples, simple
traffic flow models are considered. On a microscopic level, traffic flow is described by Bando’s optimal
velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as
well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter
is not conserved, although it has certain value in any of two possible stationary states corresponding either
to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description,
the size n of car cluster is considered as a stochastic variable in master equation. Here n = 0 corresponds
to the fixed-point solution of the microscopic model, whereas the limit cycle is represented by coexistence
of a car cluster with n > 0 and free flow phase. The detailed balance holds in a stationary state just like
in equilibrium liquid-gas system. It allows to define free energy of the car system and chemical potentials
of the coexisting phases, as well as a relaxation to a local or global free energy minimum. In this sense
the behaviour of traffic flow can be described by equilibrium thermodynamics. We find, however, that the
chemical potential of the cluster phase of traffic flow depends on an outer parameter — the density of
cars in the free-flow phase. It allows to distinguish between the traffic flow as a driven system and purely
equilibrium systems.

PACS. 05.70.-a Thermodynamics – 05.10.Gg Stochastic analysis methods – 89.40.-a Transportation

1 Introduction

An extension of thermodynamic concepts from equilib-
rium to nonequilibrium or driven systems is one of the
fundamental problems in physics. It refers also to so-
called nonphysical systems, like traffic or granular flow,
economics, biological systems, etc., where the laws of mi-
croscopic interaction and motion differ from those known
in physics. Different approaches have been developed till
now. In the geometrical formulation of thermodynam-
ics [1], the latter is regarded as a theory arising in the
analysis of dynamics. In this concept the equilibrium
thermodynamics is represented by a manifold of time-
independent equilibrium states, whereas the thermody-
namics of driven system is represented by a manifold of
slowly evolving states. A k-component system undergo-
ing chemical reaction is considered as an example in [1].
A more widely discussed approach is based on the in-
troduction of entropy [2,3] and usage of the entropy
maximization principle in various applications, e.g., lin-
ear dissipative driven systems [3] and single-lane traf-
fic [2]. An appropriate definition of temperature is a rele-
vant question when we speak about a nonphysical system.
In [2] the temperature T and pressure p of traffic flow
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have been introduced via derivatives of certain thermody-
namic functions, and it has been found that T is nega-
tive at typical velocities. In another approach [4] similari-
ties between traffic and granular flow have been discussed
proposing two effective temperatures: one characterising
fast or single-car dynamics, and another — slow or collec-
tive dynamics of traffic flow.

As mentioned in [2], entropy need not occupy a posi-
tion of primacy in a general theory beyond the classical
equilibrium thermodynamics. We have found that in cases
where the stationary state of a driven system has the prop-
erty of detailed balance in a space of suitable stochastic
variable, the thermodynamic potential can be easily intro-
duced based on this property in a complete analogy with
equilibrium systems. This approach can prove to be useful
in many applications due to its relative simplicity. As an
example we consider formation of a car cluster in one-lane
traffic and show its analogy with the phase separation in
supersaturated vapour-liquid system.

The aggregation of particles out of an initially homo-
geneous situation is well known in physics, as well as in
other branches of natural sciences and engineering. The
formation of bound states as an aggregation process is re-
lated to self-organization phenomena [5–7]. The formation
of car clusters (jams) at overcritical densities in traffic flow
is an analogous phenomenon in the sense that cars can be
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considered as interacting particles [8–10]. The develop-
ment of traffic jams in vehicular flow is an everyday ex-
ample of the occurrence of nucleation and aggregation in
a system of many point-like cars. For previous work fo-
cusing on the description of jam formation as a nucleation
process, see [11–14]. It is related to phase separation and
metastability in low-dimensional driven systems, a topic
which has attracted much recent interest [15–19]. Metasta-
bility and hysteresis effects have been observed in real traf-
fic, see, e.g., [20–26] for discussion of empirical data and
the various different modelling approaches.

Here we focus on the application of thermodynamics to
such a many-particle system as traffic flow. In a first step
we do not consider real traffic with its very complicated
behaviour but limit our investigations to simple models
of a directional one-lane vehicular flow. We hope this will
trigger further development to describe more realistic sit-
uations of multi-lane traffic as well as of synchronized
flow [24]. We have found certain analogy with physical sys-
tems like supersaturated vapour-liquid, although there are
also essential differences, since the traffic flow is a driven
system. We would like to outline some basic ideas and
concepts developed throughout the paper.

1. On a microscopic level traffic flow can be described
by Bando’s optimal velocity model. In this case the
equations of motion can be written as Newton’s law
with accelerating and decelerating forces and one can
define the potential V and the kinetic T energy of the
car system, as well as the total energy E = T + V .
The latter one has a thermodynamic interpretation as
〈E〉 = U , where U is the internal energy of the system.

2. Traffic flow is a dissipative system of driven or active
particles. It means that the total energy is not con-
served, but we have an energy balance equation

dE

dt
+ Φ = 0

with the energy flux Φ following from the equations of
motion and consisting of dissipation (due to friction)
and energy input (due to burning of petrol).

3. In the long-time limit the many-car system tends to
certain stationary state. In the microscopic descrip-
tion it is either the fixed-point or the limit cycle in
the phase space of velocities and headways depending
on the overall car density and control parameters. The
stationary state is characterised by certain internal en-
ergy.

4. On a mesoscopic level traffic flow can be described
by stochastic master equation, where stochastic vari-
able is the number of congested cars n, i.e., the size of
car cluster. In this case the fixed-point solution corre-
sponds to n = 0, and the limit cycle — to coexistence
of a car cluster with n > 0 and free flow phase.

5. In the space of cluster size, the detailed balance holds
for the stationary solution just like in equilibrium phys-
ical systems. It allows to describe various properties of
the stationary state by equilibrium thermodynamics.
In particular, we calculate free energy of the system
and chemical potentials of coexisting phases in a com-

plete analogy with the known treatment for a super-
saturated liquid-gas system.

6. In distinction to equilibrium systems, the chemical po-
tential of the cluster phase of traffic flow is not an in-
ternal property of this phase, since it depends on an
outer parameter — the density of cars in the free-flow
phase. It allows to distinguish between the traffic flow
as a driven system and purely equilibrium systems.

2 Microscopic optimal velocity model
of traffic flow

Traffic flow can be viewed as a random dynamical sys-
tem [27,28] of active or intelligent particles [29–31]. To
describe it on a microscopic level, here we use a simple
version of Bando’s optimal velocity (OV) model for point-
like cars moving on a one-lane road with periodic bound-
ary conditions. The model is defined by the following set
of equations [32–34]

dvi

dt
=

1
τ

(vopt(∆xi) − vi) , (1)

dxi

dt
= vi, (2)

where the coordinate xi(t) as well as the velocity vi(t) of
each car i = 1, . . . , N at every time moment t can be cal-
culated out of the initial values by integrating the coupled
equations of motion. Here

vopt(∆x) = vmax
(∆x)2

D2 + (∆x)2
(3)

is the optimal velocity function depending on the headway
distance ∆xi = xi+1 − xi proposed in [11–13,35,36]. It
includes the maximal velocity vmax and the interaction
distance D as parameters. Equation (1) can be written as

m
dvi

dt
= Facc(vi) + Fdec(∆xi), (4)

where

Facc(vi) =
m

τ
(vmax − vi) ≥ 0 (5)

Fdec(∆xi) =
m

τ
(vopt(∆xi) − vmax) ≤ 0 (6)

are the accelerating and decelerating forces, respec-
tively. Similar representation has been introduced already
in [9,10]. The only distinguishing feature is that in our
case the deceleration force is specified by (6), whereas
in [9] it is related to a power-like interaction potential.
The coordinate-dependent force term is due to interaction
between cars

Fdec(∆x) = vmax
m

τ

(
(∆x)2

D2 + (∆x)2
− 1
)

(7)

and is always negative, starting at Fdec(∆x = 0) =
−vmaxm/τ , approaching zero at infinite distances. The
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potential energy of car system can be defined as V =∑N
i=1 φ(∆xi), where φ(∆xi) is the interaction potential of

the ith car with the car ahead, which is given by

Fdec(∆xi) = −∂φ(xi+1 − xi)
∂xi

=
dφ(∆xi)

d∆xi
. (8)

By integrating this equation we get

φ(∆x) = vmax
D m

τ

[
π

2
− arctan

(
∆x

D

)]
, (9)

where the integration constant is chosen such that
φ(∞) = 0. For comparison, the interaction potential of
the form φ(∆x) ∝ (∆x)−α has been considered in [9]. Note
that Fdec(∆xi) is not given by −∂V/∂xi, since the latter
quantity includes an additional term −∂φ(xi −xi−1)/∂xi.
This term is absent in our definition of the force because
the car behind does not influence the motion of the ac-
tual ith vehicle. It reflects the fact that, unlike in physical
systems, the third Newton’s law does not hold here.

The total time derivative of the potential energy is

dV

dt
=

N∑
i=1

[
∂φ(∆xi)

∂xi

dxi

dt
+

∂φ(∆xi)
∂xi+1

dxi+1

dt

]

=
N∑

i=1

(vi+1 − vi)Fdec(∆xi). (10)

The total time derivative of the kinetic energy
T =

∑N
i=1 mv2

i /2 is obtained by multiplying both sides
of (4) by vi and summing over i. It leads to the following
energy balance equation

dE

dt
+ Φ = 0 (11)

for the total energy E = T + V of the car system, where

Φ = −
N∑

i=1

[viFacc(vi) + vi+1Fdec(∆xi)] (12)

is the energy flux. It includes both energy dissipation
due to friction and energy input from the engine. Equa-
tion (11) shows that, in distinction to closed mechani-
cal systems, the total energy is not conserved in traf-
fic flow. Nevertheless, it approaches a constant value in
the long-time limit, where the system converges to one of
two possible stationary states: either to the fixed point
∆xi = ∆xhom, vi = vopt (∆xhom) (where ∆xhom = L/N
is the distance between homogeneously distributed N cars
over the road of length L), or to the limit cycle in the phase
space of headways and velocities. Both situations are illus-
trated in Figure 1. At small enough density of cars there
is a stable fixed point (solid circle), which lies on the opti-
mal velocity curve (dotted line). An unstable fixed point
(empty circle) exists at larger densities. In the latter case
any small perturbation of the initially homogeneous fixed
point situation leads to the limit cycle (solid line) in the
long-time limit.
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Fig. 1. Fixed points (circles) and limit cycle (solid line) in
the space of headways ∆x and velocities v of cars. The solid
circle represents the stable fixed point at the car density ρ =
N/L = 0.0303 m−1. The empty circle is the unstable fixed
point at a larger density ρ = 0.0606 m−1, where the long-time
trajectory for any car is the limit cycle shown. The fixed points
lie on the optimal velocity curve (dotted line) given by (3). The
parameters are chosen as N = 60, D = 33 m, vmax = 20 m/s,
τ = 1.5 s, and m = 1000 kg.
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Fig. 2. The total energy E of the car system, measured in
units of mv2

max/2, depending on time t given in seconds. The
same sets of parameters have been used as in Figure 1. The
upper solid line corresponds to a larger density ρ = 0.0606 m−1

where the limit cycle forms, whereas the lower dashed line —
to a smaller density ρ = 0.0303 m−1 where the convergence to
stable fixed point is observed.

In the thermodynamic interpretation the mean energy
〈E〉 is the internal energy U of the system. The latter
one thus has certain value in any one of the stationary
states. The temporal behaviour of E for the same sets of
parameters as in Figure 1 is shown in Figure 2. In the
case of the convergence to the limit cycle (solid line) for
ρ = 0.0606 m−1, one can distinguish 6 plateau in the
energy curve. The first one represents the short-time be-
haviour when starting from an almost homogeneous initial
condition with zero velocities, and the second plateau is
the unstable fixed point situation. Further on, 4 car clus-
ters have been formed in the actual simulation, and this
temporal situation is represented by the third relatively
small plateau. The next three plateau with 3, 2, and fi-
nally 1 car clusters reflect the coarse graining or Ostwald
ripening process. The dashed line shows the convergence
to the stable fixed point value at ρ = 0.0303 m−1.

Apart from the internal energy, other thermodynamic
functions can be introduced as well. In the following
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sections we will calculate the free energy F of the traf-
fic flow. By using the known relation F = U −T ∗S we can
calculate also the entropy S of traffic flow for a properly
defined ‘temperature’ T ∗.

Up to now we have considered purely deterministic
equations of motion. Randomness can be included, e.g.,
by adding a multiplicative noise term to (4). It leads to
stochastic differential equations

m dvi(t) = (Facc(vi) + Fdec(∆xi))dt + σ vidWi(t), (13)
dxi(t) = vidt (14)

considered and solved numerically in [13]. Here σ is the
noise amplitude, and dWi(t) is the increment of Wiener
process. Similar equation with additive noise term has
been studied in [9,10]. An advantage of the version with
multiplicative noise is that it guarantees the positiveness
of velocities vi. In the deterministic model the departure
(leaving a cluster) times are strongly correlated in such
a way that, in the stationary regime, one car leaves the
cluster after each time interval of a given length τ1. The
arrival (adding to a cluster) times also are strongly corre-
lated due to the repulsive forces. The noise makes these
correlations weaker. It allows to apply the formalism of
stochastic Markov processes to describe approximately the
fluctuations of the cluster size, as discussed in the follow-
ing section.

3 Mesoscopic stochastic model of traffic flow

It is easier to study the formation of a car congestion on
a mesoscopic level, as it has been done in [11–13,35,36],
where we do not follow each individual car, but only look
for the number of congested cars n, i.e., the size of car
cluster. In this description it is also very easy to introduce
the randomness, by considering n as a stochastic variable.
Following [11–13,35,36], in the simplest model only one
cluster on a circular road is considered, and the probability
p(n, t) that it contains n cars at time t is given by one-step
master equation

dp(n, t)
dt

=w+(n − 1) p(n − 1, t)

+ w−(n + 1) p(n + 1, t)
− [w+(n) + w−(n)] p(n, t) : 0 < n < N.

(15)

For n = 0 and n = N the equations look differ-
ent, i.e., terms with p(−1, t) and p(N + 1, t) are ab-
sent. In the simplest version of the model of point-like
cars the transition rates are w−(n) = 1/τ and w+(n) =
vopt (∆xfree) /∆xfree, where τ is a reaction time con-
stant and ∆xfree(n) = L/(N − n) is the mean head-
way distance in the free flow phase. In this model no
large stable cluster forms at low densities of cars, whereas
a macroscopic fraction of them are condensed (jammed)
into the cluster above certain critical density. The first
situation corresponds to the fixed-point solution of the

Bando model, whereas the second one — to the limit cy-
cle. It is a remarkable fact that the stationary solution
pst(n) = limt→∞ p(n, t) obeys the detailed balance con-
dition pst(n)w+(n) = pst(n + 1)w−(n + 1). It allows to
describe some properties of the model by equilibrium ther-
modynamics in analogy to the liquid-vapour system, as
discussed in the following sections, in spite of the fact that
the traffic flow is a driven, i.e., nonequilibrium system.

4 Free energy of the liquid-gas system

The principle of detailed balance is useful to describe the
equilibrium in a physical system. In particular, we analyse
the condensation of supersaturated vapour to show how
the free energy and chemical potentials can be derived
based on this principle with the following idea to apply
the same scheme for traffic flow.

For simplicity, we consider a situation where only one
cluster of molecules coexists with the vapour phase. The
number n of molecules called monomers binded in the clus-
ter is a stochastic variable, whereas their total number
N in a given volume V is fixed. The stochastic events
of adding or removing one monomer are characterised by
transition rates w+(n) and w−(n) depending on the ac-
tual cluster size n. Following [7,13], the detailed balance
reads

w+(n − 1)
w−(n)

= exp
(
−F (n) − F (n − 1)

kBT

)
, (16)

where T is temperature, kB the Boltzmann constant, and
F (n) is the free energy of state (including all possible mi-
croscopic distributions of coordinates and momenta of free
monomers) with cluster size n. For large enough n (16) can
be approximated as

w+(n)
w−(n)

� exp
(
−∂F/∂n

kBT

)
, (17)

which leads to the equation

ln
[
w+(n)
w−(n)

]
= − 1

kBT

∂F

∂n
. (18)

From this we get

F = F0 − kBT

n∫
0

ln
[
w+(n′)
w−(n′)

]
dn′, (19)

where F0 = F (n = 0) does not depend on the cluster size
n. It is the free energy of the system without cluster, in
this case the free energy of an ideal gas. We insert here
the physical ansatz for the transition rates (see [13])

w+(n)
w−(n)

=
λ3

0(T )(N − n)
V

exp
(

fn−1(T ) − fn(T )
kBT

)
, (20)

where V is the fixed volume of the system, fn(T )
is the binding energy of a cluster of size n,
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λ0(T ) = h/(2πmkBT )1/2 is the de Broglie wave length
of a monomer, and h is the Planck’s constant. By using
the approximation fn−1(T ) − fn(T ) � −∂fn(T )/∂n, we
obtain

F = F0 − kBT

n∫
0

ln
[
λ3

0(T )(N − n′)
V

]
dn′ + fn(T ). (21)

The integration, using
∫

ln xdx = x ln x − x, yields

F = F0 − kBTN

[
ln
(

λ3
0(T )

N

V

)
− 1
]

+ kBT (N − n)
[
ln
(

λ3
0(T )

N − n

V

)
− 1
]

+ fn(T ). (22)

The free energy of ideal system (gas) F0 cannot be ob-
tained from the detailed balance relation. It is given by
F0 = −kBT ln Zid, where Zid is the partition function of
the ideal gas

Zid =
1

N !

3N∏
α=1

1
h

L∫
0

dxα

∞∫
−∞

dpα exp
(
− p2

α

2mkBT

)
(23)

=
1

N !

(
L

λ0(T )

)3N

.

Hence, applying the Stirling formula lnN ! � N ln N −N ,
we obtain

F0 = kBTN

[
ln
(

λ3
0(T )

N

V

)
− 1
]

. (24)

By inserting (24) into (22) we recover the known expres-
sion

F = kBT (N − n)
[
ln
(

λ3
0(T )

N − n

V

)
− 1
]

+ fn(T ) (25)

for the free energy of liquid-gas system under isothermal
and isochoric conditions. The binding energy fn(T ) can
be written as

fn(T ) = µ∞(T )n + σA(n), (26)

where µ∞(T )n represents the volume contribution,
µ∞(T ) < 0 being the chemical potential for a flat droplet
interface (with infinite radius r), and σA(n) is the sur-
face contribution. Here σ > 0 is the surface tension,
whereas A(n) = 4πr2 is the surface area of a droplet
with radius r. Taking into account that the number of
particles (molecules) in the cluster is n = (cclust 4π/3) r3,
where cclust is the particle density inside the cluster, equa-
tion (22) can be written as

F − F0

V kBT
=ρ

{(
1 − n

N

) [
ln
(
1 − n

N

)
− 1
]

+ 1

− n

N
ln
(
λ3

0(T )ρ
)

+
µ∞(T )
kBT

n

N

+
3
2

(T ) (cclust 4π/3)1/3

N−1/3
( n

N

)2/3
}

,

(27)
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)

Fig. 3. The ratio of transition rates w+(n)/w−(n) depending
on the fraction of condensed particles n/N for three dimen-
sionless densities ρ̃ = 5 × 10−7 (dot-dashed line), ρ̃ = 10−5

(dashed line), and ρ̃ = 1.2 × 10−5 (solid line).

where ρ = N/V is the overall density and


(T ) =
2σ

cclustkBT
(28)

is the diffusion length (width) of the liquid-gas interface.
Further on we introduce dimensionless density ρ̃ =

λ3
0(T )ρ and dimensionless volume Ṽ = V/λ3

0(T ). In this
notation the equation (20) transforms to

w+(n)
w−(n)

= ρ̃
(
1 − n

N

)
exp

(
−µ∞(T )

kBT

)
× exp

(
−
(T ) (cclust 4π/3)1/3

Ṽ −1/3ρ̃−1/3
( n

N

)−1/3
)

,

(29)

whereas (27) becomes

F − F0

Ṽ kBT
= ρ̃

{(
1 − n

N

) [
ln
(
1 − n

N

)
− 1
]

+ 1 − n

N
ln (ρ̃) +

µ∞(T )
kBT

n

N

+
3
2

(T ) (cclust 4π/3)1/3

Ṽ −1/3ρ̃−1/3
( n

N

)2/3
}

. (30)

These equations allow us to calculate the ratio
w+(n)/w−(n), as well as the normalised (dimensionless)
free energy difference (F −F0)/(Ṽ kBT ) depending on the
fraction of condensed molecules n/N at a given over-
all density for fixed volume and temperature. The re-
sults of calculation for three different dimensionless densi-
ties ρ̃ = 5 × 10−7, 10−5, 1.2 × 10−5 at the values of di-
mensionless control parameters µ∞/(kBT ) = −12 and

(T ) (cclust 4π/3)1/3

Ṽ −1/3 = 0.003 are shown in Figures 3
and 4. Note that the extrema of F − F0 in Figure 4 cor-
respond to the crossing points with the horizontal line
w+(n)/w−(n) = 1 in Figure 3. At the smallest density
(dot-dashed line) there are no crossing points and the
free energy is a monotonously increasing function of n/N ,
showing that the stable state of the liquid-gas system con-
tains no liquid droplet. Stable droplet appears at larger
densities (dashed and solid lines) by overcoming a nucle-
ation barrier (local free energy maximum in Fig. 4).
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Fig. 4. Normalised free energy difference (F −F0)/(Ṽ kBT ) =
f−f0 depending on the fraction of condensed particles n/N for
three dimensionless densities ρ̃ = 5 × 10−7 (dot-dashed line),
ρ̃ = 10−5 (dashed line), and ρ̃ = 1.2 × 10−5 (solid line).

The parameters we have chosen are quite realistic,
i.e., comparable with those of water at T = 300 K and
V = 5 × 10−23 m3 with about 37 250 molecules (mass
m = 2.99 × 10−23 kg) at ρ̃ = 10−5. For water at T =
300 K we have λ0(T ) = 2.377 × 10−11 m and cclust =
3.346× 1028 m−3. Hence, the dimensionless density in the
cluster ρ̃clust = cclustλ

3
0 = 4.491 × 10−4 exceeds about 50

times the critical mean density ρ̃ = ρ̃c � 9.2 × 10−6 at
which the condensation (i.e., a minimum of free energy at
n/N > 0) appears in our calculation. Assuming the above
parameters of water, we obtain 
(T ) = 8.953×10−10 m for
the width of the liquid-gas interface and surface tension
σ = 6.20×108 Nm/m2. It is about 3 times the characteris-
tic intermolecular distance in the cluster, which is roughly
c
−1/3
clust � 3.1 × 10−10 m. The critical density ρ̃c increases

with temperature and becomes equal to the cluster density
ρ̃clust at the critical temperature T = Tc. In our descrip-
tion the physically meaningful densities are restricted by
ρ̃ ≤ ρ̃clust. It means that no condensation phase transition
takes place for these physical densities at T > Tc. Assum-
ing that µ∞ and σ do not change with temperature and
that the above given values of dimensionless control pa-
rameters correspond to T = 300 K, we find Tc � 430 K in
our example.

5 Free energy of traffic flow

Now we make similar calculation of free energy for the
traffic flow model introduced in Section 3. Similar general
relations (16) to (19) are valid to describe the stationary
(quasi-equilibrium) properties in the space of car cluster
size n, since the detailed balance is the property of the
stationary solution of the one-dimensional one-step master
equation for the probability distribution over n. Here we
only replace kBT with T ∗ which is the ‘temperature‘ of
traffic flow having energy dimension.

The ratio of transition rates in this case reads

w+(n)
w−(n)

= τ
vopt(∆xfree)

∆xfree
, (31)

where vopt(∆x) is the optimal velocity function given
by (3) and ∆xfree is the headway distance in free flow
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Fig. 5. The ratio of transition rates w+(n)/w−(n) depending
on the fraction of congested cars n/N for four dimensionless
densities ρ̃ = 0.1 (dotted line), ρ̃ = 1 (dot-dashed line), ρ̃ =
3.186 (dashed line), and ρ̃ = 5 (solid line).

phase. Assuming the model of point-like cars we have
∆xfree(n) = L/(N − n), where L is the length of the
road and N is the total number of cars. It yields

w+(n)
w−(n)

= vmaxτρ
1 − n/N

1 + ρ2D2(1 − n/N)2
, (32)

where ρ = N/L is the car density. Introducing the di-
mensionless density ρ̃ = ρD and a dimensionless control
parameter b̃ = D/(vmaxτ), it becomes

w+(n)
w−(n)

=
1
b̃

ρ̃(1 − n/N)
1 + ρ̃2(1 − n/N)2

, (33)

or

ln
[
w+(n)
w−(n)

]
= ln

(
ρ̃

b̃

)
+ ln

[
1 − n

N

]
− ln

[
1 + ρ̃2

(
1 − n

N

)2
]

. (34)

By inserting the latter relation into (19) (where kBT →
T ∗), the integration using

∫
ln
(
1 + x2

)
dx = 2 arctanx +

x ln
(
1 + x2

)− 2x yields

F − F0

L̃ T ∗ = ρ̃

{(
1 − n

N

)
ln
(
1 − n

N

)
− n

N
− n

N
ln
(

ρ̃

b̃

)
−
(
1 − n

N

)
ln
(

1 + ρ̃2
[
1 − n

N

]2)
+ ln

(
1 + ρ̃2

)}
+ 2 arctan ρ̃ − 2 arctan

(
ρ̃
[
1 − n

N

])
, (35)

where L̃ = L/D is the dimensionless length of the road.
The results for w+(n)/w−(n) and (F −F0)/(L̃T ∗) de-

pending on the fraction of congested cars n/N at four dif-
ferent densities are shown in Figures 5 and 6. The value
of the dimensionless control parameter has been chosen
b̃ = 2/7 ≈ 0.2857. It corresponds, e.g., to D = 24 m,
vmax = 42 m/s, and τ = 2 s. Like in the case of the liquid-
supersaturated vapour system, w+(n)/w−(n) is never 1
and no stable car cluster forms at small densities (dotted
line). In distinction to the liquid-vapour case, the cluster
appears without a nucleation barrier in the actual traf-
fic flow model at somewhat larger densities ρ̃ (dot-dashed
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Fig. 6. Normalised free energy difference (F − F0)/(L̃T ∗) =
f − f0 depending on the fraction of congested cars n/N for
four dimensionless densities ρ̃ = 0.1 (dotted line), ρ̃ = 1 (dot–
dashed line), ρ̃ = 3.186 (dashed line), and ρ̃ = 5 (solid line).

line), whereas the nucleation barrier (free energy maxi-
mum) shows up only at even larger ρ̃ values (solid line).

In the above calculation we have determined only the
difference F − F0, but not the free energy F0 of the ideal
system without car cluster. Like in the case of supersat-
urated vapour, the latter cannot be derived from the de-
tailed balance. It should be calculated from a microscopic
model. Now, however, we should take into account that
the distribution over momenta for cars is not the same
as that for molecules in an ideal gas. As a first approxi-
mation we may assume similar Gaussian distribution with
only shifted mean value 〈p〉 = m〈v〉 = mvopt (∆xhom) in
accordance with the optimal velocity vopt (∆xhom) in the
homogeneous flow of cars with the mean headway distance
∆xhom = L/N = 1/ρ. The Gaussian form of the distri-
bution is well consistent with the simulation results for
the stochastic car-following models [9,10,13]. We should
take into account also that cars are moving always in one
direction, i.e., momentum p > 0 always holds. Finally, in
distinction to the ideal gas of molecules, the coordinates
and momenta of cars are one-dimensional. Hence, by anal-
ogy to (36) we can write

Zid =
1

N !

N∏
α=1

1
h

L∫
0

dxα

∞∫
0

dpα exp

(
− (pα − 〈p〉)2

2mT ∗

)

≈ 1
N !

(
L

λ0(T ∗)

)N

, (36)

where λ0(T ∗) = h/(2πmT ∗)1/2. The latter approximate
equality in (36) holds when 〈p〉2/(2mT ∗) 
 1 or, in other
words, when the width of the velocity distribution is nar-
row as compared to the mean velocity. The latter condi-
tion is well satisfied for the model (13)–(14) with certain
set of control parameters used in the simulations of [13]
(see Fig. 40 there). The distribution width, however, in-
creases with the noise amplitude. In fact, the approxima-
tion (36) is good enough when the distribution function
has small value at zero momentum p = 0, as in the sim-
ulation results of [9,10]. According to the above consid-
eration, temperature in traffic flow is a parameter which
controls this distribution width or the amplitude of veloc-
ity and momentum fluctuations, like in the ideal gas of

molecules. According to (36), the ideal part of free energy
reads

F0 = −T ∗ [N ln (L/λ0(T ∗)) − ln N !]
� T ∗N [ln (ρλ0(T ∗)) − 1] . (37)

This expression is analogous to (24).

6 Relaxation to a free energy minimum

Now we consider the general behaviour of a system
(equally valid for liquid-gas system with T ∗ = kBT and
traffic flow) in vicinity of a local or global minimum of
F (n). In this case the argument of exponent in (17) is
small and we can make a Taylor expansion

w+(n)
w−(n)

� exp
(
−∂F/∂n

T ∗

)
� 1 − 1

T ∗
∂F

∂n
. (38)

It can be rewritten as

w+(n) − w−(n) � −w−(n)
T ∗

∂F

∂n
. (39)

On the other hand, we can write in a deterministic ap-
proximation

dn

dt
= w+(n) − w−(n). (40)

Comparing (39) and (40), we obtain

dn

dt
� −w−(n)

T ∗
∂F

∂n
. (41)

Like in the Landau theory of phase transitions, we can
expand the free energy around the minimum point n = n0

defined by
∂F

∂n

∣∣∣∣
n=n0

= 0. (42)

In the first approximation, where we retain only the lead-
ing term, we have also w+(n) = w−(n) = w± (n0). It leads
to the kinetic equation

dn

dt
� −Γ0 (n − n0) , (43)

where

Γ0 =
w± (n0)

T ∗
∂2F

∂n2

∣∣∣∣
n=n0

(44)

is the relaxation rate. For Γ0 > 0, what corresponds to
minimum of F , the solution is the exponential relaxation
to n = n0, i.e.,

n(t) = n0 + (n(0) − n0) e−Γ0 t. (45)

This solution is valid also for Γ0 < 0, in which case n0

corresponds to a free energy maximum. In this case it
describes the deviation from this maximum point.
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7 Chemical potentials

Our system can be considered as consisting of two phases:
the cluster phase with n particles and free energy Fcl(n),
and the ideal gas phase with Nid = N − n particles and
free energy Fid (Nid). The total free energy then is F =
Fcl + Fid. While the total number of particles N is fixed,
the number of particles in any of the phases fluctuates. Ac-
cording to the definition, we can write µcl = ∂Fcl/∂n and
µid = ∂Fid/∂Nid = −∂Fid/∂n for the chemical potentials
of these phases. Hence

∂F

∂n
=

∂Fcl

∂n
+

∂Fid

∂n
= µcl − µid (46)

and the kinetic equation (41) can be written as

dn

dt
� −w± (n0)

T ∗ (µcl − µid) . (47)

The latter equation has certain physical interpretation:
the driving force pushing the system to the phase equi-
librium is the difference of chemical potentials in both
phases. The equilibrium is reached when the chemical po-
tentials of the coexisting phases are equal, i.e., µcl = µid.

For the liquid-gas system Fid(T, V, N, n) is given by
(24), where N is replaced with Nid = N − n, i.e.,

Fid(T, V, N, n) = kBT (N − n)
[
ln
(

λ3
0(T )

N − n

V

)
− 1
]

.

(48)
Hence the total free energy (25) can be written as

F = Fid(T, V, N, n) + fn(T ). (49)

The chemical potential of the liquid phase is thus
given by the derivative of the binding energy fn(T ) ≡
Fcl(T, V, N, n), i.e.,

µcl = µ∞(T ) + σ
∂A(n)

∂n
= µ∞(T ) + kBT 
(T )k(n), (50)

where
k(n) =

1
r

= (cclust 4π/3)1/3 n−1/3 (51)

is the curvature of the liquid surface for a droplet with
radius r and surface area A(n) = 4πr2. The chemical po-
tential of the gaseous phase calculated from (48) is

µid = −∂Fid

∂n
= kBT ln

(
λ3

0(T )
N − n

V

)
= kB T ln (ρ̃gas) , (52)

where ρ̃gas = λ3
0(T )(N−n)/V is the dimensionless density

of molecules in the gaseous phase. According to these ex-
pressions for the chemical potentials, the ansatz (20) can
be written as

w+(n)
w−(n)

= exp
(

µid

kBT

)
exp

(
fn−1(T ) − fn(T )

kBT

)
� exp

(
−µcl − µid

kBT

)
. (53)

The latter relation is consistent with (17) and (46).
By analogy, the free energy of the free flow phase in

traffic is

Fid(T ∗, L, N, n) = T ∗(N − n)
[
ln
(

λ0(T ∗)
N − n

L

)
− 1
]

,

(54)
as consistent with (37) where we put N → Nid = N − n
and ρ → Nid/L. From (54) we get

µid = −∂Fid

∂n
= T ∗ ln

(
λ0(T ∗)

N − n

L

)
= T ∗ ln

(
λ0(T ∗)

D
ρ̃free

)
, (55)

where ρ̃free = D(N −n)/L is the dimensionless density of
cars in the free flow phase. The chemical potential of the
cluster phase can be easily calculated from equations (18),
(34), and (46). It yields

µcl = −T ∗
{

ln
(

D

λ0b̃

)
− ln

[
1 + ρ̃2

(
1 − n

N

)2
]}

= −T ∗
{

ln
(

D

λ0b̃

)
− ln

[
1 + ρ̃2

free

]}
. (56)

It is remarkable that, in distinction to the liquid-gas sys-
tem, the chemical potential of the cluster phase is not an
internal property of this phase, since it depends on the
outer parameter — the density of the surrounding free-
flow phase ρ̃free. The physical interpretation of this fact is
that the traffic flow is a driven system, which approaches
a stationary rather than equilibrium state in the usual
sense. However. as we have shown here, various properties
of this stationary state can be described by equilibrium
thermodynamics.

Free energy of the cluster phase can be calculated
consistently from (35), (37), and (54) according to F =
Fcl + Fid. The result is

Fcl(T ∗, L, N, n) = T ∗N
{
− n

N

(
2 + ln

(
D

λ0b̃

))
(57)

+
2
ρ̃

[
arctan ρ̃ − arctan

(
ρ̃
[
1 − n

N

])]
(58)

−
(
1 − n

N

)
ln
(

1 + ρ̃2
[
1 − n

N

]2)
+ ln

(
1 + ρ̃2

)}
. (59)

It is consistent with µcl = ∂Fcl/∂n.

8 Conclusions

1. In the current paper we have shown how thermody-
namics can be applied to such a many-particle system
as traffic flow, based on a microscopic (car-following)
as well as a mesoscopic (stochastic cluster) descrip-
tion, in analogy to equilibrium physical systems like
supersaturated vapour forming liquid droplets. The
basic idea here is to derive the free energy function
and chemical potentials by using the detailed balance,
which holds in the stationary state of traffic flow in the
space of car cluster sizes.
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2. Distinguishing features between the traffic flow and
equilibrium physical systems have been outlined. In
particular, we have found that the third Newton’s law
does not hold on the level of “microscopic” equations
of motion for individual cars. Besides, the traffic flow
is a dissipative system with inflow and outflow of to-
tal energy. Unlike in equilibrium systems, the chemical
potential of the phase of congested cars is not an in-
ternal property of this phase, since the traffic flow is a
driven system.
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